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AN APPLICATION OF SOMMERFELD'S COMPLEX ORDER WAVE FUNCTIONS 

TO ANTENNA THEORY 

Abstract 

In the past wave functions of integral order have been used 

quite advantageously in the solution of certain antenna and boundary-value 

problems. However, in some instances these wave functions are completely 

alien to the problem and introduce difficulties which, indeed, can be re- 

solved but only at the expense of logical simplicity. To place in evidence 

the usefulness and "naturalness" of complex order wave functions for the 

solution of certain problems, we examine theoretically the input admittance 

of a boss antenna with the aid of these functions. 

Introduction 

Suppose we desire to construct a solution to the wave equation 

(V2 • k2) u « 0 (1) 

where u must satisfy the Sommerfeld radiation condition and must assume 

prescribed values on the surface of a sphere of radius a. Using spherical 

coordinates r, 9, 0 with origin at center of sphere, assuming that u is 

independent of the azimuthal angle 0 , and requiring that on the surface of 

sphere 
au • p ^2_u - f(G) (2) 

where a and ß are constants, we consider a solution to (1) of the form 

(y      a\   m    S 

n-^0 n n n  %    ' 

where P (cos 6) is the Legendre polynomial of integral order n and 

h_'^'(kr) is the spherical Hankel function of the same order. The A*» are 

constants which have to be determined by requiring that (3) satisfy (2) when 
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r • a.  As it stands, (3) satisfies the radiation condition, 

lim r(~- u - iku) = 0 (U) 

r ^.öO 

because as r—>.°o the spherical Hankel functions have the behaviour of an 

outwardly propagating wave, 

hn
U; (kr)-(-i)  .Sjj- (5) 

To determine the unknown constants, the A 's we substitute (3) into (2) and 

use the orthogonality property of the Legendre polynomials, 

/ 
P^cos 6) P (cos 9) sin 9 d6 • 6   —-— /£\ 

nm 2m+1 o 
where 6  • 0, 1 when n / m, n • m respectively. Thus nm. 

A 2m •!    /ff»? Pm<cos 9> sln ° d9 

fa hn<1)(ka) • p gL   h^ka)] (7) 

Substituting (?) into (3) we have the desired solution. It is clear that 

the crux of this problem is the orthogonality of the Legendre polynomials. 

If this orthogonality did not exist, it would be impossible to determine 

the AJJ'S. However, for certain problems it would be much more convenient 

and "natural"' if the radial functions, instead of the angular functions, 

were orthogonal. This is trve, for example, if the wave function has to 

satisfy on a conical surface boundary conditions which depend on r * In 

the boss antenna problem the wave function must satisfy just such boundary 

conditions. 

In this note we first develop some properties of the complex 

order wave functions. We find that u can be represented in the form of an 

infinite series, each term of which is the product of an angular function 

and a radial function. The angular and radial functions prove to be the 
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Legendr« .functions and the spheric-il ^ankel functions of comnlex order 

respectively. And now it is the spherical Hankel functions cf complex 

order that are orthogonal. Then we apply these wave functions to the 

calculation of the input impedance of a boss antenna« 

Complex Order Wave Functions 

Let us consider in spherical coordinates r, 9, 0, a TM 

field j E"rE+9E,H«0H. where r, Ö, £, are the unit vectors 

and E , EQ, H.v are the non-vanishing components of the electromagnetic r      <&      ~fl 

field.    For steady-state, i.e., time dependence    exp(-iü)t), the complex 

vectors    E and H   satisfy the Maxwell equations, 

VxE    -    iutiH (8) 

7x| • io| (9) 

from which it follows that 

7xVxH»k2H (10) 

where k2 • uPE\i   and £, \i    denote the dielectric constant and permea- 

bility of free space. If we assume that E and H are independent of the 

azimuthal angle 0, then in spherical coordinates (10) takes the form 

7* (r V * r Is ah h (H08ir 9)] + k2r H0" ° (ID 

If we set 

H0 " iw£ h u (12) 

then (11) can be written as 

ia>£ §g   [(v2 + k2) u(r> Q)J   .   o  * (13) 

We choose    u(r,9)    such that 

(S72+ k2) u(r,0)    -    0 (1U) 



for all permissible values of r end 9 . Then according to (9) and (12) 

the electromagnetic field is given by the following expressions: 

Er " " r~aln~e §?8 <öin 8 Iff u) &*> 

Ee-? h   eT(ru) (16) 

H„ - UZ^   u (17) 

Now we examine the solution of the wave equation (lU) that satisfies the 

radiation condition (h) and the boundary condition, 

—• (ru)   • 0 vim   r • a (18) or 

In view of (16) it is seen that the condition (18) is equivalent to requir- 

ing that Eg vanish over surface of sphere of radius a * 

Writing r.(r,9) explicitly in separated form, « » R(r) P(cos 6) 

(lii) yields two ordinary differential equations 

|j (sin 9 jg) * CP - 0 (19) sin 9 d9 v    d9 

i h(r2 £>* *2 *2 - c (2o) 
where C is the separation constant. If we choose C •/(/'• 1) where ^ 

is unrestricted (a complex number), the solution of (19) is the Legendre 

function Py (cos 9). This function is identical to the hypergeometric 

function, i.e., 

P„ (cos 9) - F(- V, V *  1, 1, i = l°S 9  ) (21) 

and is finite for all 9 except 9 - tt . The corresponding solution of 

(20) is the spherical Hankel function of the first kind h y     (kr) and it 

is related to the cylindrical Hankel function of the first kind H /,   (kr) 
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according to the relation, 

hv(1 W) 4E *%l/z(kr) (22) 

Hence, we can write the solution of (1U) as 

u(r,9) -Y^h^'Ocr) P^(cos 9) (23) 

where the summation is over all values of V determined by the boundary con- 

dition (18). Substituting (23) into (18) we obtain 

To satisfy (2U) the K's are chosen so that 

[A f- »A-J • 0  . (25) 
r • a 

Vie denote these K's as JA, i^, U , etc. 

The radial functions hu^'Jx) are orthogonal over the range 

x - ka to x •«>. To show this we recall J'rora (20) that for any V , say, 

V" 2 

and for any other value of  V, say,   l/ 

x  ~2 (xhjj1 (x))  *(x2 -l^O^* l))hy(1)    (x)    «    0 (27) 
is ' m 

Multiplying (26) by   h S1}    and (27)    by   hy        and then integrating the 
Si « 

difference from x • ka to x - oo t  we obtain 
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U,      ( U   *• \) - u     ( JJ    *-l)1 \ ha ^'f»>  h..(^M 
"m  v'rr,    " *n  V    n        j    J    "n      * "%    v"' u J ka 

oo 

5 K<>> & (-»JW   -*V.(1^>fe(*h„U><,))]*. 
ka 

r d T6** 
* *Vn

(1)(*) It <* vm
(1)<» -x h"m

(1)(x) Ä (x h*n
(1)<*>)  I <28> 

L Jka 

where the last equality results from an integration by parts. The integrated 

term di&appears at x = ka and x »oo   by virtue of (25) and the asymptotic 

behaviour of hy^  '(z). Thus 

s 
ka 

hyn
(l)(x) hyW<x) dx - 6^ N^ka) (29) 

Ny (ka) is e normalization factor which can bo obtained from (28) by a>i ap- 

plication of 1»Hospital'3 rule for the limit ]/_^.j/ , and, of course, 6 

is the well-known Kronecker delta. 

Hence, the solution of (lb) which satisfies the boundary condition 

(18) and the Sonmerfeld radiation condition is given by a sum over all J^'st 

u(r,9) "2_/^ hj,(1)(kr) P^ (cos ft) (30.) 

where the A>>'s are as yet undetermined constants. Once we are given 

u(r,9 ) on any conical surface 9 » 8 , the A,,'s are determinable by 

virtue of the orthogonality condition (29). Contrasting (3) and (30) we 

see that (3) is appropriate for boundary conditions on a sphere, whereas 

(30) is appropriate for cones. 

Substituting (30) into (1£), (161», and (17) we find the electro- 

magnetic field in terms of the complex order wave functions, hy '(kr) I%(cos «; 
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iyr,9) - iwE^jAyh^^kp) |g Pj, (cos 9)  , (31) 

E9(r'9) ' r2/^ (r h^1)(kr)) h ?J> <cos 9)» (32) 

and since P^(cos 9) satisfies (19) when C •i>(^' + 1), 

Er(r,9) - J^A *y+  1) V(1)(kr) P^ (cos 9) (33) 

An Application to Antenna Theory 

To place in evidence the usefulness of these complex order wave 

functions, we shall use them to compute the admittance of a boss antenna. A 

boss antenna consists of a coaxial line fitted with an infinite Hange and a 

hemispherical boss at the end of the inner conductor (fig. 1). Except for 

the addition uf a hemispherical boss, it is identical to the circular dif- 

(2) 
fraction antenna. 

We assume the antenna is excited by a single propagating mode 

(the principal mode) in the coaxial region. This mode has no azimuthal 

variation. The non-vanishing components of the field in the coaxial region, 

zfilO, a^p^b, are Hw». E , E  and in the antenna region, r>a, 9<2> the 

non-vanishing components are Hw, E , EQ. Cylindrical coordinates are used 

in the coaxial region and SDherical coordinates in the antenna region. 

In the antenna region, according to (33)» the r-component of 

the electric field is given by 

E
r(
r»0) - rZjA^ V{V* 1)h^1 (kr) py(cos 9)>  *£*> 9=2 " (33a) 

If we denote    E (r,w) by £(r),  (33a) becomes 

0   -    \2jy W+ 1) V(1)(kr) P^(0), r^b,    9 « § (3Ua) 

£(r) - |2^ V{V+ 1) hw
(l)(kr) ?p(Q), a^r^b,    9 - | (3ub) 



since the component of the electric  field tangent to the perfectly conduct- 

i.   ..  \--fi-t-    *    JJ         ui-.t •^ „i ,r< ^,.  K-»+V>   „:-JP-   -f   flJi^   bv     ill..-      iki") 

and integrating from    kr - ka    to    kr «<*>, we obtain by virtue of the ortho- 

gonality relation (29), 

f rf(r) hy (kr) d(kr) 
ka 

V        j/(J/+ 1) P^(0)    N^(ka) 
(35) 

Substituting (35) into (31), we see that the magnetic field at any point in 

the antenna region is given by 

,.> f    g "ST" h^(kr) h^(kr')    gg Pu(cos 9) 
JO  V,9> - i.£ J r'(?(r.) ddor»)^    ^M)WO)Uh) 

kV '        ' (36) 

According to eq.  (2.3U) of reference 2, the magnetic field in the 

coaxial region    a£p<£b, zj£0    is given by 

a ' (37) 

where I(z) is the coaxial line current and    £(p) is the p-component of the 

electric field across the aperture,    ^(p) and    £(r) of (3Ub) are identical 

since in the plane of the baffle the r-cocrdinate of the spherical coordi- 

nate system and the p-coordinate of the cylindrical coordinate system are 

identical.    The eigenvalues   X    and the eigenfunctions    R (p)    are defined 

by 

t£-*l   fe-pf •   V)    VP)"0 (38) 

(_<L + 1) Rn(p) - 0  at p - a,b (39) 

and the A *s are roots of the transcendental equation 
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J    ( A   n)   N fX  b)    -    N (Ä_a)  J    (A  b) (UO) 
on o o    « on 

The orthogonality relations, 

b 

J\(P)    Rn(p)    Pdp-6^ (la) 
a 

J   fi^p) dp - 0 (U2) 

immediately follow from (38) and (39). 

Since Hw must be continuous across the aperture, we have 

HJ* (r,f) « HJ"\P,0) for a^pa&b. Thus from (36) and (37) •2' " n0 

b 

2VJ * iw&j PP
1
) p' »'Zijrrrg    • 

ft *  n 

ico8k   j   r.f(r.) dr'^     ^ + f) P„(0) Nu(ka) M 

ka 

This is an integral equation. toe shall not attempt to solve it. Rather, 

we shall use ii to formulate a variational principle for the antenna ad- 

mittance . 

From (2.26) and (2.27) of reference 2 the- coaxial line current 

and voltage are given by 

1(a) - 2tr (a *'** *  £elkz) (UU) 

b .  

v(x) « J Ep(->(P,«) dp -ff i« 
elkz - ßelkz> loe I       ^ 

a. 

where a and ß are constants. 

The characteristic admittance of the line is given by 
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_2tr  
1/ !l    - /U \ f\/L\ 
M-log(-) \wj 

Nov let us derive the variatioral principle for the admittance 

Y(0) where 

Y(0) - Y{üT (U7) 

We do this by multiplying (1*3) by p£(p) and integrating from p - 6 to 

p • b, and finally dividing the resultant equation by 

b 

I j £(P> dpf    -  fv(0)V 

Thus 

1    1(0)*      ito£- 
2* rV. i2Z_, v/; 2 ; k2• 

D 

fpf(p) Rn(p) dpV 

[jj(p)dp]2Zj y\? 

(jp-dp- ^(p»)hJ/
1) (kp-A2 a 

a J 

(1*8) 

It can be easily shown that Y(0) is stationary with respect to small varia- 

tions of £(p) about the true y»(p) determined by the integral equation (1*3). 

We choose - as a trial function. That is, we let £(p) - "" 

in (1*8). Iue to the orthogonality relation (1*2), (1*8) becomes 
b 

2HlCo£k^hi1)0<P> dp)2       g   Py(Q) 
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This is an accurate expression for the admittance of the antenna* It is 

sometimes more useful to consider the ratio Y(0)/Y , which is a dimension 

less quantity. 

kb 

HO).   .       1    \kl"V  w^j __i  ^ Pp (0) 
Y0        log (|)  »r (D,U.,12J/W, y(i/*D  U^ 

Kcl 

\kJ hv
(1)(kp)d(kP)V a 

a Jf.y(1W)]2a»p)    /(j/*1)    Py 
ka 

This is only a formal solution, however. Since the values of the functions 

involved have not been tab 

present obtained for ($0). 

involved have not been tabulated, only certain limiting values   can be at 
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Figure 1.  BOSS ANTENNA CONSISTING OF COAXIAL LINE 

FITTED WITH FLANGE AND HEMISPHERICAL BOSS 
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